

Complex Numbers:

Standard Sorm:
$$a + bi = i^2 - 1$$

Real Imaginary

Part Port

 $a - 2i$ Re. Port = $a - 2i$

Im. Port = $a - 2i$

Abs. Value of complex number $a - 2i$
 $a - 2i = a -$

Criven
$$Z = 6 - 8i$$

1) Re. Part $Z = 0 + 6i$
 $0 = 6$
3) Sind $|Z| = \sqrt{6^2 + 6^2}$
 $= \sqrt{6^2 + (8)^2} = \sqrt{36 + 64} = \sqrt{100} = 10$
Express $\sqrt{-36}$ in Complex Form
$$\sqrt{-36} = \sqrt{36} |Z| = 6i$$
Express $\sqrt{45} = \sqrt{-100}$ in Complex Sorm.
$$\sqrt{25} = \sqrt{-100} = 5 - \sqrt{100} |Z| = 5 - 10i$$
Express $\sqrt{45} = \sqrt{-100} = 5 - \sqrt{100} |Z| = 5 - 10i$

$$\sqrt{25} = \sqrt{-100} = 5 - \sqrt{100} |Z| = 5 - 10i$$

$$\sqrt{25} = \sqrt{-100} = 5 - \sqrt{100} |Z| = 5 - 10i$$

$$\sqrt{26} = \sqrt{-100} = 5 - \sqrt{100} |Z| = 5 - 10i$$

$$\sqrt{26} = \sqrt{-100} = 5 - \sqrt{100} |Z| = 5 - 10i$$

$$\sqrt{26} = \sqrt{-100} = 5 - \sqrt{100} |Z| = 5 - 10i$$

$$\sqrt{26} = \sqrt{-100} = 5 - \sqrt{100} |Z| = 5 - 10i$$

$$\sqrt{26} = \sqrt{-100} = 5 - \sqrt{100} |Z| = 5 - 10i$$

$$\sqrt{26} = \sqrt{-100} = 5 - \sqrt{100} |Z| = 5 - 10i$$

$$\sqrt{26} = \sqrt{-100} = 5 - \sqrt{100} |Z| = 5 - 10i$$

$$\sqrt{26} = \sqrt{-100} = 5 - \sqrt{-100} = 5 - \sqrt{-100} = 5 - \sqrt{-100}$$

$$\sqrt{26} = \sqrt{-100} = 5 - \sqrt{-100$$

Powers of:

Recall

$$(\chi^{m})^{n} = \chi^{m} N$$

1) Even Powers

 $(2 - 1)^{50} = 1$
 $(2 - 1)^{50} = 1$
 $(30 = (2)^{5})$
 $(-1)^{50} = -1$

Simplify

1) $(50 = (2)^{15})$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$
 $(-1)^{50} = (2)^{15}$

Powers of i:

Recall

$$(\chi^{m})^{n} = \chi^{m} \times \chi^{m} \times$$

Simplify
$$(2+5i)^2$$
 Hint:
 $=(2+5i)(2+5i)$ $x^2 = x \cdot x$
 $= 4+10i+10i+25i^2$
 $= 4+20i+25(-1)$
work on
 $= 4+20i-25$
 $= -21+20i$ $= -21$
 $= -21+20i$ $= -21$